Membership-Function-Dependent Stability Analysis and Control Synthesis of Guaranteed Cost Fuzzy-Model-Based Control Systems
نویسندگان
چکیده
This paper focuses on the guaranteed cost stability analysis of fuzzy-model-based (FMB) control systems. Representing the nonlinear plant using a Takagi– Sugeno (T–S) fuzzy model, a fuzzy controller is employed to close the feedback loop. A weighted linear quadratic cost function is considered as the cost index to measure the performance of the closed-loop fuzzy system in terms of the system states, system outputs, and control signals. The stability of the FMB control system is investigated by the Lyapunov stability theory subject to the minimization of cost index for performance realization. A membershipfunction-dependent approach using the piecewise-linear membership functions is employed to include the information of membership functions into the stability analysis. Membership-function-dependent stability conditions in terms of linear matrix inequalities are obtained to determine the system stability and feedback gains with the consideration of the system performance measured by the cost function. A simulation example is provided to illustrate the effectiveness and merits of the proposed approach.
منابع مشابه
Stability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay
In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...
متن کاملNON-FRAGILE GUARANTEED COST CONTROL OF T-S FUZZY TIME-VARYING DELAY SYSTEMS WITH LOCAL BILINEAR MODELS
This paper focuses on the non-fragile guaranteed cost control problem for a class of T-S fuzzy time-varying delay systems with local bilinear models. The objective is to design a non-fragile guaranteed cost state feedback controller via the parallel distributed compensation (PDC) approach such that the closed-loop system is delay-dependent asymptotically stable and the closed-loop performance i...
متن کاملEnhanced Fuzzy Controller for Nonlinear Systems: Membership-Function-Dependent Stability Analysis Approach
Fuzzy-model-based (FMB) control approach provides a systematic and effective way to control nonlinear systems. It has been shown by various applications (Lam et al., 1998; Lian et al., 2006; (b)Tanaka et al., 1998) that FMB control approach performs superior to some traditional control approaches. Based on the T-S fuzzy model (Sugeno & Kang, 1988; Takagi & Sugeno, 1985) the system dynamics of t...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملFuzzy Relational Matrix-Based Stability Analysis for First-Order Fuzzy Relational Dynamic Systems
In this paper, two sets of sufficient conditions are obtained to ensure the existence and stability of a unique equilibrium point of unforced first-order fuzzy relational dynamical systems by using two different approaches which are both based on the fuzzy relational matrix of the model.In the first approach, the equilibrium point of the system is one of the centers of the related membership fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016